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The main objective of this research was to 
examine the effect of changes in limb 
position on pattern recognition based 
myoelectric control and consider 
strategies to mitigate its effects.
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Results

Background

Pattern recognition based myoelectric control 
systems perform best under repeatable conditions.  
As such, the literature often reports classification 
accuracy of signals recorded from a fixed position.  
This results in more repeatable patterns and higher 
accuracies.

Clinical testing, however, focuses more on usability 
and task oriented problems (such as moving 
cups/blocks, or lifting objects overhead).  These 
tests invariably force the user to move their limb in 
various positions, resulting in changes in 
biomechanics,  gravity and socket fit.

The literature has already shown that electrode 
displacement can degrade pattern recognition 
performance, therefore it is reasonable to 
hypothesize that positional changes could have a 
similar affect.

Ongoing Work

Part of an ongoing study at UNB looking at clinical 
robustness of pattern recognition-based myoelectric 
control:

• Effect of position, limb loading, contraction force

• Selective classification for non-ideal conditions

These results indicate that EMG classification 
error is strongly dependent on limb position. This  
dependence may be attributable to variations in 
muscle recruitment (for limb stabilization) or 
muscle geometry (resulting in a form of shift with 
respect to the electrodes). As a result, it may be 
insufficient to train a prosthetic control scheme in 
a single position and expect it to translate well to 
multi-position use.

The degradation shown here, when changing 
between  positions, may contribute to the 
differences seen between published classification 
accuracy results and observed clinical 
performance.

Note that while the overall position error (shown in 
Figure 3) is higher when using only the forearm 
accelerometer, the effect on motion classification 
(shown in Figure 4) is not as significant. A possible 
explanation for this is that humeral 
position/orientation (which was often misclassified 
when using the forearm ACCEL) may have less 
influence on the EMG than does forearm 
position/orientation.

Discussion

Pattern recognition accuracies were 
shown to be adversely affected by limb 
position.   Proper training and inclusion of 
accelerometer data are promising 
approaches to minimize these effects.  
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8 Subjects 
• 7 male, 1 female
• 7 right, 1 left-dominant

8 classes of motion:
• Wrist Flexion/Extension
• Wrist Pronation/Supination
• Hand Open 
• Power Grip, Pinch Grip
• No Motion

8 channels of EMG
• Stainless steel electrodes 
• LTI differential amplifiers

Two accelerometers (3-
axis):
1) Over the biceps brachii
2) Adjacent to the electrode 
cuff on the forearm.

The collection of training and test data corresponding 
to all 8 classes was repeated in each of the 8 
positions: 

P1: Arm hanging at side, elbow bent at 90°
P2: Straight arm reaching up (45° from vertical)
P3: Straight arm hanging at side
P4: Straight arm reaching forward (horizontal)
P5: Torso horizontal, straight arm hanging
P6: Humerus hanging at side, elbow fully bent
P7: Humerus reaching forward, elbow bent at 90°

(causing forearm to be vertical)
P8: Humerus reaching forward, elbow bent at 90°

(humerus rotated inward so forearm is horizontal)

Signal Processing

As this is an introductory study, we chose a 
commonly reported classification scheme.  This 
control scheme has been used in various research 
labs investigating the real-time performance of 
myoelectric control.

EMG data were low pass filtered at 500Hz and 
notch filtered at 60Hz to remove power line 
interference.

Time Domain features (mean absolute value, zero-
crossings, slope sign changes and “wavelength”) 
were extracted using 250ms windows with 50ms 
overlap from EMG.

Average values of the accelerometer data were 
calculated over the same time windows.

Classification was performed using an LDA 
classifier.
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8 different classifiers were trained (each using EMG 
data from one position only).   

Figure 1 shows the results when training in one 
position and testing in each other position (averaged
over all classes).

• Average Intra-position error of 6.9%
• Average Inter-position error of 35.0%
• Average Total Error of 31.4%

4.7 44.4 28.5 35.6 32.7 35.7 33.6 46.6
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23.2 35.0 34.1 30.2 27.8 30.3 11.3 34.4

37.7 41.2 41.3 41.3 39.2 41.1 32.1 9.4

A single classifier was trained using EMG 
data from all positions.   
Data from the same classes were pooled
irrespective of position.

Figure 2 shows the error (averaged across
all users and classes) when  testing in the 
various positions.
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A classifier was trained using the 
accelerometer data, and was used to 
classify the position of the limb.  

Figure 3 shows the position
classification results.

A single LDA classifier was trained using both 
the EMG and accelerometer data.
Data from all positions were pooled for each 
class.

This differs from position specific classification
because the accelerometers were used to 
provide continuous context to the EMG, rather
than  discrete position.

• Average of 5.9%

Inter-Position

Multi-Position Training

Two Tier Classification

Combined Input Classification

Figure 1: Average Inter-Position 
Classification Error (%)

Figure 2: Average Error When 
Training With All Positions  (%)

Figure 3: Average Position 
Classification Error  (%)

Figure 4: Average Position 
Specific Classification Error  (%)

Data were subsequently classified using
position specific EMG classifiers (who’s
results were shown in Figure 1).  Figure 4
shows the final results.

• Average error of 6.9% using known position
• Average error of 7.1% using both  

accelerometers

Figure 5: Multi-Input 
Classification Error (%)
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Optimal Single Position Training
Training With All Positions

Position Specific Classification
Combined EMG & ACCEL

Figure 6: Comparison of 
Proposed Techniques (%)
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